ORISSA BOARD
 SUBJECT : MATHEMATICS
 CLASS : X
 TIME : 1 : 15 HOURS

AR/AXR - 15 - MTH SET - B
MAXIMUM MARKS : 50

Question with Solutions

PART-A

1. For which value of $p,(2,2)$ is a solution of the equation $3 x+4 y-2 p=0$?
(A) 3
(B) 5
(C) 7
(D) 9

Sol. (C) Given equation $3 x+4 y-2 P=0$
If $(2,2)$ is a solution of this equation then it staisfy this equation.
$3(2)+4(2)-2 P=0$
$2 \mathrm{P}=14$
$P=7$
2. If the equation $3 x+y+1=0$ and $r x+s y+7=0$ are inconsistent, then what is r : ?
(A) $3: 1$
(B) $1: 3$
(C) $5: 1$
(D) $1: 5$

Sol. (A) $3 x+y+1=0$
$r x+s y+7=0$
For in consistent $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
$\frac{3}{r}=\frac{1}{s}$
$\frac{r}{s}=\frac{3}{1}$
3. What is the value of the dete,ninant
(A) 8
(B) 10
(C) 12
(D) 14

Sol. (A)
$\left|\begin{array}{ll}5 & 4 \\ 3 & 4\end{array}\right|$
$=5 \times 4-3 \times 4$
$20-12=8$
4. Which of the following points does not lie on the graph of the equation $3 x-2 y+4=0$?
(A) $(2,5)$
(B) $(1,2)$
(C) 4,8$)$
(D) $(-2,-1)$

Sol. (B) Given equation is $3 x-2 y+4=0$
For point $(2,5)$
$3(2)-2(5)+4$
$6-10+4$
$=0$ (lie on the equation)
For point $(1,2)$

D ownload all N O T E S and PAPE R S at StudentSuvidha.com

$3(1)-2(2)+4$
$3-4+4=3$ (does not lie)
For point (4, 8)
$3(4)-2(8)+4=0$ (lie)
For point $(-2,-1)$
$3(-2)-2(-1)+4=0$ (lie)
Answer is $(1,2)$
5. The graph of which of the following equations is parallel to the graph of $3 x-y=2$?
(A) $3 x+y=-2$
(B) $2 x-3 y=2$
(C) $6 x-2 y=3$
(D) $6 x+2 y=-4$

Sol. (C) $3 x-y=2$
Slope $=-\frac{3}{(-1)}=3$
For option (A) slope $=\frac{-3}{1}$
For option (B) slope $=\frac{-2}{(-3)}=\frac{2}{3}$
For option (C) slope $=\frac{-6}{(-2)}=3$
For option (D) slope $=-\frac{6}{2}=-3$
Hence option (C) is correct.
6. The sum of a number and its reciprocal is 3 . If the number is x, then which of the following is the quadratic equation containing x ?
(A) $x^{2}-3 x+2=0$
(B) $x^{2}+3 x+1=0$
(C) $x^{2}-3 x+1=0$
(D) $x^{2}+3 x+2=0$

Sol.
(C) ATQ
$x+\frac{1}{x}=3$
$x^{2}+1=3 x$
$x^{2}-3 x+1=0$
7. Which of the following being taken for p, the roots of the equation $x^{2}+p x+1=0$ will be real and equal?
(A) 2
(B) 2.5
(C) 4
(D) 8
(A) For real roots $D=0$

Sol.
$b^{2}-4 a c=0$
$p^{2}-4(1)(1)=0$
$p^{2}=4$
$p= \pm 2$
Hence option (A) is correct.

D ownload all N O T E S and PA PE R S at StudentSuvidha.com

8. If one of the roots of the quadratic equation $x^{2}+x+k=0$ is -2 , then what is the value of k ?
(A) 2
(B) -2
(C) -3
(D) 0

Sol. (B) If -2 is a root of this equation then
$(-2)^{2}+(-2)+k=0$
$4-2+k=0$
$\mathrm{k}=-2$
9. Which of the following quadratic equations has the sum of the roots as 2 and product of the roots as - 3 ?
(A) $x^{2}-2 x-3=0$
(B) $x^{2}+3 x-3=0$
(C) $x^{2}-3 x-3=0$
(D) $x^{2}+2 x-3=0$

Sol. (A) equation is
$x^{2}-x$ (sum of roots) $+($ product of roots $)=0$
$x^{2}-x(2)+(-3)=0$
$x^{2}-2 x-3=0$
10. In an AP, t_{8} is more than t_{3} by 25 . What is the common difference of the AP ?
(A) 5
(B) 4
(C) 2
(D) 1

Sol. (A) $t_{8}=t_{3}+25$
$a+7 d=a+2 d+25$
$5 d=25$
$d=5$
11. What is the common difference of an $A P$ of which $t_{n}=5 n+1$?
(A) 7
(B) 5
(C) 3
(D) 1

Sol. (B) $t_{n}=5 n+1$
$t_{1}=6$
$t_{2}=11$
common difference $=t_{2}-t_{1}=11,-\hat{j}=5$
12. Which of the following sequeices is not an $A P$?
(A) $1,3,5,7,9$,
(B) $0,-2,-4,-6, \ldots \ldots \ldots$
(C) $-7,-5,-2,-1,1$, $3, \ldots$
, $2,3,4 \ldots$
Difference between consecutive terms is not same. so this is not an A.P.
13. In an $A P, S_{n}=n^{2}$, what is t_{n} ?
(A) $2 n$
(B) $2 n-1$
(C) $2 n+1$
(D) $2 n+3$

Sol. (B) $S_{n}=n^{2}$
$\frac{n}{2}[2 a+(n-1) d]=n^{2}$
$2 a+(n-1) d=2 n$ \qquad
If $\mathrm{n}=1$ then $\mathrm{S}_{1}=\mathrm{a}=1$
$T_{n}=a+(n-1) d$
from eq. (1) \& (2)
$T_{n}=2 n-1$

D ownload all N O T E S and PAPE R S at StudentSuvidha.com

14. What is the middle of the scores in a data arranged in ascending or descending order known as ?
(A) Deviation
(B) Mode
(C) Mean
(D) Median

Sol.

(D) Median

15. If M is the mean of the scores $x_{1}, x_{2}, x_{3}, \ldots \ldots \ldots \ldots . . . x_{n}$, then what is the mean of the scores $a x_{1}$, ax x_{2}, $\mathrm{ax}_{3}, \ldots \ldots \ldots . ., \mathrm{ax}_{\mathrm{n}}($ When $\mathrm{a} \neq 0$)
(A) M
(B) $\mathrm{M}+\mathrm{a}$
(C) $a \mathrm{aM}$
(D) $\mathrm{M}-\mathrm{a}$

Sol. (C) $\frac{x_{1}+x_{2}+x_{2}+x_{3}+\ldots x_{n}}{n}=M$
$x_{1}+x_{2}+\ldots x_{n}=n M$
required mean $=\frac{a x_{1}+a x_{2}+\ldots a x_{n}}{n}=\frac{a \times n M}{n}=a M$
16. What is the mean of the first 20 positive even numbers ?
(A) 20
(B) 21
(C) 22
(D) 24

Sol. (B) First 20 positive even integers $2,4,6, \ldots 40$
Mean $=\frac{2+4+\ldots 40}{20}=\frac{2 \times(1+2+\ldots 20)}{20}=\frac{2 \times 20 \times 21}{20 \times 2}=21$
17. What is the median of the data given below?
$7,12,15,6,20$
(A) 12
(B) 10
(C) 7
(D) 8

Sol. (A) Given observation $7,12,15,6,20$
$\Rightarrow 6,7,12,15,20$
number of observations $=5$
Median $=\left(\frac{\mathrm{n}+1}{2}\right)^{\text {th }}$ obs $=\left(\frac{5+1}{2}\right)^{\text {th }}=\left(3^{\text {rd }}\right.$ obs
Median $=12$
18. If a ludo-dice is rolled rree, then what is the probability of getting 5 or less than that ?
(A) $\frac{3}{6}$
(B) $\frac{5}{6}$
(C) $\frac{6}{6}$
(D) $\frac{2}{3}$

Sol. (B) $S=\{1,2,3,4,5,6\}$
required probability $=\frac{5}{6}$
19. Two coins are tossed once. What is the probability of getting at least two T's ?
(A) $\frac{1}{4}$
(B) $\frac{2}{4}$
(C) $\frac{3}{4}$
(D) $\frac{4}{4}$

Sol. (A) $\mathrm{S}=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$
For at least two T's $=\{T T\}$
required probability $=\frac{1}{4}$

20. A child is chosen at random from a group containing of 4 girls and 6 boys. What is the probability of the child being a girl ?
(A) $\frac{1}{4}$
(B) $\frac{2}{3}$
(C) $\frac{2}{5}$
(D) $\frac{3}{4}$

Sol. (C) Total girls $=4$
Total boys $=6$
Total children $=10$
required probability $=\frac{4}{10}=\frac{2}{5}$
21. Rose flowers of equal size are contained in a bag and of those 5 are red, 3 are white and 2 are yellow. If one is taken out from the bag at random, what is the probability of getting a red rose ?
(A) $\frac{1}{3}$
(B) $\frac{1}{5}$
(C) $\frac{3}{10}$
(D) $\frac{1}{2}$

Sol. \quad Red $=5$
White $=3$
Yellow = 2
Total flowers $=10$
required probability $=\frac{5}{10}=\frac{1}{2}$
22. If the coordinates of three vertices of an triangle are $(0,0),(1,0)$ and $(0,1)$, then what is the area of the triangle in square unit?
(A) 1
(B) $\frac{1}{2}$
(C) $\frac{1}{3}$
(D) $\frac{1}{4}$

Sol.
(B) Area of $\Delta=\frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y^{\prime}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|$
$=\frac{1}{2}|0(0-1)+1(1-0)+0(0,0)|$
$=\frac{1}{2}|1|=\frac{1}{2}$
23. The distance between two points M and N is 5 units. If the ordered pair of M is $(3,1)$ and N lies in the $y-$ axis. What is the ordered pair of N ?
(A) $(4,0)$
(B) $(0,4)$
(C) $(5,0)$
(D) $(0,5)$

Sol. (D) Let co-ordinate of point N is $(0, y)$
ATQ $\sqrt{(0-3)^{2}+(y-1)^{2}}=5^{2}$
$9+(y-1)^{2}=25$
$(y-1)^{2}=16$
$y-1= \pm 4$
$y=5$ or -3
Hence point $(0,5)$

D ownload all N O T E S and PAPE R S at StudentSuvidha.com

24. The origin is the mid point of a line segment and $(2,3)$ is one of its end point, then which of the following represents the ordered pair of the other end point?
(A) $\left(\frac{1}{2}, \frac{3}{2}\right)$
(B) $(-2,3)$
(C) $(2,-3)$
(D) $(-2,-3)$

Sol. (D) Let another ordered pairs is (x, y)
$(a, 0)$ is mid point hence
$\frac{x+2}{2}=0 \quad \& \quad \frac{y+3}{2}=0$
$x=-2 \quad y=-3$
point is $(-2,-3)$
25. The coordinates of two points A and b are (a, b) and $(a,-b)$ respectively. What is the distance between them ?
(A) 2 a
(B) $2 b$
(C) $\sqrt{a^{2}+b^{2}}$
(D) $2 \sqrt{a^{2}+b^{2}}$

Sol. (B) distance $=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$
$=\sqrt{(a-a)^{2}+(b-(-b))^{2}}=\sqrt{4 b^{2}}=2 b$
26. If the ratios of the areas of two equilateral triangles is $16: 25$, then what is the ratio of the lengths of the corresponding sides of the same two triangles ?
(A) $3: 4$
(B) $6: 5$
(C) $5: 6$
(D) $4: 5$

Sol.
(D) $\frac{\text { Area of } 1^{\text {st }} \text { triangle }}{\text { Area of } 2^{\text {nd }} \text { triangle }}=\left(\frac{\text { side of } 1^{\text {st }} \text { triangle }}{\text { side of } 2^{\text {nd }} \text { triangle }}\right)^{2}$
ratio of sides of triangles $=\sqrt{\frac{16}{25}}=\frac{4}{6}$
27. In the given figure, $m \angle Q=5, m \angle Q S R=102^{\circ}$ and $\triangle S Q R=\triangle R Q P$. What is $m \angle P R S$?

(A) 65°
(B) 70°
(C) 75°
(D) 80°

Sol.
(C) $\Delta \mathrm{SQR} \sim \Delta \mathrm{RQP}$
$\angle \mathrm{SQR}=\angle \mathrm{RQP}=51^{\circ}$
$\angle \mathrm{QRS}=\angle \mathrm{QPR}=180^{\circ}-\left(102+51^{\circ}\right)=27^{\circ}$
$\angle \mathrm{RSQ}=\angle \mathrm{PRQ}=102^{\circ}$
Now $\angle \mathrm{PRS}=\angle \mathrm{PRQ}-\angle \mathrm{SRQ}$
$=102^{\circ}-27^{\circ}=75^{\circ}$
\square
28. In $\triangle A B C$ and $\triangle D E F$ if $m \angle A=m \angle D . m \angle B=m \angle E . A B=2 \mathrm{~cm}, B C=3 \mathrm{~cm}$ and $D E=6 \mathrm{~cm}$, then what is EF in cm ?
(A) 9
(B) 7
(C) 5
(D) 3

Sol. In $\triangle A B C$ \& $\triangle D E F$
$\angle \mathrm{A}=\angle \mathrm{D}$
$\angle B=\angle E$
so by AA similarity
$\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
so $\frac{A B}{D E}=\frac{B C}{E F}$
$\frac{2}{6}=\frac{3}{\mathrm{EF}}$
$E F=9 \mathrm{~cm}$
29. In $\triangle D E F, D E=3 \mathrm{~cm}, E F=4 \mathrm{~cm}$ and in $\triangle P Q R, P Q=9 \mathrm{~cm}$. If triangles $\triangle D E F$ and $\triangle P Q R$ are similar, then what is QR in cm ?
(A) 13
(B) 14
(C) 12
(D) 16

Sol. (C) $\triangle \mathrm{DEF} \sim \Delta \mathrm{PQD}$
$\frac{D E}{P Q}=\frac{E F}{Q R}$
$\frac{3}{9}=\frac{4}{Q R}$
$Q R=12 \mathrm{~cm}$
30. In $\triangle P Q R$, the bisector of $\angle P Q R$ int \Leftarrow sects $P R$ at the point S. If $P Q=5 \mathrm{~cm}$ and $Q R=7 \mathrm{~cm}$, then what is PS: PR ?
(A) $5: 12$
(B) 1
(C) $8: 12$
(D) $12: 8$

Sol. (A)

by internal bisector theorem
$\frac{P Q}{Q R}=\frac{P S}{S R}$
$\frac{5}{7}=\frac{P S}{S R}$ \qquad

Now $\frac{P S}{P R}=\frac{P S}{P S+S R}$ from equ.(1)
$=\frac{\mathrm{PS}}{\mathrm{PS}+\frac{7}{5} \mathrm{PS}}=\frac{5 \mathrm{PS}}{12 \mathrm{PS}}=\frac{5}{12}$
31. Two chords $\overline{\mathrm{PQ}}$ and $\overline{\mathrm{RS}}$ of a circle intersect each other at T . If $\mathrm{RT}=4 \mathrm{~cm}, \mathrm{ST}=3 \mathrm{~cm}, \mathrm{QT}=6 \mathrm{~cm}$, what is PT in cm ?
(A) 1
(B) 2
(C) 3
(D) 4

Sol. (B)

$\because R T \times T S=T P \times P Q$
$4 \times 3=\mathrm{PT} \times 6$
$\mathrm{PT}=2 \mathrm{~cm}$
32. In the given diagram ' O ' is the centre the circle $P Q R$. If $m \widehat{Q R P}=230^{\circ}$, how much is $m \angle P X Q$?
(A) 140°
(B) 1
(C) 105°
(D) 100°

Sol. (B)

$\angle \mathrm{P} \times \mathrm{Q}=\frac{1}{2}<\overparen{\mathrm{PRQ}}$
$=\frac{1}{2} \times 230^{\circ}=115^{\circ}$

33. $\overline{\mathrm{DE}}$ is a diameter in the circle DEF. How much is m $\widehat{D F E}$?
(A) 180°
(B) 135°
(C) 120°
(D) 115°

Sol. (A)

$D E$ is a diameter hevel
$\angle \overparen{\mathrm{DFE}}=\angle \mathrm{DOE}=180^{\circ}$
34. What is the relation between the degree unit and radian unit used for measuring an angle ?
(A) $\frac{\pi}{3}$ radian $=40^{\circ}$
(B) $\frac{2 \pi}{3}$ radian $=100^{\circ}$
(C) $\frac{\pi}{2}$ radian $=90^{\circ}$
(D) π radian $=120^{\circ}$

Sol. (C) in option (C)
$\frac{\pi}{2} \times \frac{180^{\circ}}{\pi}=90^{\circ}$
so option (C) is correct.
35. In the given diagram, O is the centre of the circle KLM and K, M are the points of contacts of the tangents drawn to the circle from P. If $\mathrm{m} \angle \mathrm{KPM}=70^{\circ}$, what is $\widehat{\mathrm{KLM}}$ equal to?

(A) 140°
(B) 120°
(C) 110°
(D) 100°

Sol. (C)

$\because \angle \mathrm{KOM}+\angle \mathrm{KPM}=180^{\circ}$
$\angle \mathrm{KOM}=180^{\circ}-70^{\circ}=110^{\circ}$

D ownload all N O T E S and PAPE R S at StudentSuvidha.com

36. In the given figure, ' O ' is the centre of the circle $N M T$. $\overrightarrow{\mathrm{PT}}$ is a tangent to the circle at T . If $\mathrm{PT}=40 \mathrm{~cm}, \mathrm{OP}=41 \mathrm{~cm}$, then what is the length of $\overrightarrow{\mathrm{OT}}$ in cm ?

(A) 9
(B) 12
(C) 13
(D) 24.5

Sol. (A) Given : PT $=40 \mathrm{~cm}$

$\mathrm{OP}=41 \mathrm{~cm}$
$\mathrm{OT}=$?
In Δ OTP

$$
\begin{aligned}
& \angle \mathrm{OTP}=90^{\circ} \\
& \mathrm{OT}^{2}+\mathrm{TP}^{2}=\mathrm{OP}^{2} \\
& \Rightarrow \mathrm{OT}^{2}+(40)^{2}=(41)^{2} \\
& \Rightarrow \mathrm{OT}^{2}=41^{2}-40^{2} \\
& \mathrm{OT}^{2}=81 \\
& \mathrm{OT}=9 \mathrm{~cm}
\end{aligned}
$$

37. In the given figure $\overleftrightarrow{T A}$ is ${ }^{\circ}$ tangent to the circle $A B C$ at A. If $m \angle C A B=75^{\circ}$ and $m \angle T A B=35^{\circ}$, then what is $m \angle A B C$?

(A) 55°
(B) 60°
(C) 70°
(D) 50°

Sol. (C) Given : $\angle \mathrm{CAB}=75^{\circ}$
$\angle \mathrm{TAB}=35^{\circ}$

$\angle \mathrm{CAQ}+\angle \mathrm{CAB}+\angle \mathrm{BAT}=180^{\circ}$ (Linear pair)
$\angle \mathrm{CAQ}=180^{\circ}\left(75+35^{\circ}\right)=180^{\circ}-110^{\circ}=70^{\circ}$
$\angle \mathrm{CAQ}=\angle \mathrm{ABC}=70^{\circ}$ (alternate interior angle segment theorem)
38. O is the centre of a circle and P is an exterior point in the plane of the circle. If $\overline{\mathrm{PT}}$ is a tangent segment to the circle, then how much is $\mathrm{m} \angle \mathrm{TOP}+\mathrm{m} \angle \mathrm{TPO}$?
(A) 30°
(B) 45°
(C) 60°
(D) 90°

Sol. (D) $\because \angle \mathrm{OTP}=90^{\circ}$ (radius in perpendicular to tangent)

In \angle OPT
$\angle \mathrm{OTP}+\angle \mathrm{TOP}+\angle \mathrm{TPO}=180^{\circ}$ (Angle sum property)
$\because \angle \mathrm{TOP}+\angle \mathrm{TPO}=180^{\circ}-90^{\circ}=90^{\circ}$
39. What is the number of direct common tangents of two internally tangent circles ?
(A) 4
(B) 2
(C) 1
(D) 3

Sol. (C) only one
40. The difference of the circumference of two concentric circles is 88 cm . What is the width of the concerned circular annulus?
(A) 7
(B) 14
(D) 21
(D) 42

Sol. (B) Let the radii be $r_{1} \& r_{2} \mathrm{~cm}$
then $2 \pi r_{1}-2 \pi r_{2}=28$
$2 \pi\left(r_{1}-r_{2}\right)=88$
$r_{1}-r_{2}=\frac{88 \times 7}{2 \times 22}=1+4 \mathrm{~cm}$
width $=14 \mathrm{~cm}$
41. The area of a sector is $\frac{11}{20}$ th of the area of the corresponding circle, what is the degree measures of the arc of the sector?
(A) 60°
(B) 120°
(D) 189°
(D) 198°

Sol. (D) Let area of circle $=\pi r^{2}$
Area of sector $=\frac{\theta}{360} \pi r^{2}$
ATP

D ownload all N O T E S and PAPE R S at StudentSuvidha.com

$\frac{\theta}{360} \pi r^{2}=\frac{11}{20} \pi r^{2}$
$\theta=\frac{360 \times 11}{20}=18^{\circ} \times 11=198^{\circ}$
42. The volume of a prism is $84 \sqrt{3}$ cubic cm and the height of the prism is 7 cm . If the base of the prism is an equilateral triangle, then what is the length, in cm , of each side of its base ?
(A) $7 \sqrt{3}$
(B) $6 \sqrt{3}$
(C) $5 \sqrt{3}$
(D) $4 \sqrt{3}$

Sol. (D) Volume of prism $=84 \sqrt{3} \mathrm{~cm}^{3}$
height of prism $=7 \mathrm{~cm}$
let side of base $=\mathrm{acm}$
Volume of prism $=$ Area of triangular base \times height
$84 \sqrt{3}=\frac{\sqrt{3}}{4} a^{2} \times 7 \Rightarrow a=4 \sqrt{3}$
43. What is the volume, in cubic cm , of a cone with 6 cm as radius of the base and 7 cm as height ?
(A) $\frac{240}{3} \pi$
(B) $\frac{250}{3} \pi$
(C) 84π
(D) 87π

Sol. (C) Given radius of cone $r=6 \mathrm{~cm}$
height $\mathrm{h}=7 \mathrm{~cm}$
Volume of cone $=\frac{1}{3} \pi r^{2} h$
$=\frac{1}{3} \times \pi \times 6 \times 6 \times 7$
$=\frac{1}{3} \times \pi \times 36 \times 7$
$=84 \pi \mathrm{~cm}^{2}$
44. The inner radius and height of an open cylindrical vessel are $2 \frac{1}{3} \mathrm{~cm}$ and 9 cm respectively. What is the greatest number of cubic cm of liquid it can hold?
(A) 142
(B) 145
(C) 154
(D) 156

Sol. (C) Radius of cylinder $=2 \frac{1}{3}=\frac{7}{3} \mathrm{~cm}$
height of cylinder $=9 \mathrm{~cm}$
Volume of cylinder $=\pi r^{2} h$
$=\frac{22}{7} \times \frac{7}{3} \times \frac{7}{3} \times 9$
$=154 \mathrm{~cm}^{3}$
45. What is the value of $\cos (A+B)+\cos (A-B)$?
(A) $2 \sin A \cos B$
(B) $2 \cos A \sin B$
(C) $2 \cos A \cos B$
(D) $2 \sin A \sin B$.

Sol. (C) $\cos (A+B)+\cos (A-B)$
$\Rightarrow \cos A \cos B-\sin A \sin B+\cos A \cos B+\sin A \sin B$
$\Rightarrow 2 \cos A \cos B$
46. Which of the following is equal to $\cot 80^{\circ} \times \cot 70^{\circ} \times \cot 60^{\circ} \times \ldots \times \cot 10^{\circ}$?
(A) 0
(B) 1
(C) $\sqrt{2}$
(D) $\sqrt{3}$

Sol. (B) $\cot 80^{\circ} \times \cot 70^{\circ} \times \cot 60^{\circ} \ldots \times \cot 10^{\circ}$
$\cot 80^{\circ} \times \cot (90-80) \times \cot (70) \cot (90-70)$
$\cot 80^{\circ} \times \tan 80^{\circ} \times \cot 70^{\circ} \tan 70^{\circ} \times \cot 60^{\circ} \tan 60^{\circ} \times \cot 50^{\circ} \times \tan 50^{\circ}$
$\because \cot \theta \times \tan \theta=1$
$=1$
47. In $\triangle L M N, \sin (L+M)=1$. What is $m \angle N$ equal to ?
(A) 60°
(B) 90°
(C) 120°
(D) 135°

Sol. $\quad(B) \sin (L+M)=1$
$\sin (L+M)=\sin 90^{\circ}$
$\Rightarrow L+M=90^{\circ}$
by angle sum property $\angle \mathrm{N}=180-90^{\circ}=90^{\circ}$
48. If $\cot \theta=\frac{p}{q}$, then what is the value of $\operatorname{cosec}^{2} \theta$?
(A) $\frac{p^{2}-q^{2}}{q^{2}}$
(B) $\frac{p^{2}+q^{2}}{q^{2}}$
(C) $\frac{q^{2}}{p^{2}-q^{2}}$
(D) $\frac{q^{2}}{p^{2}+q^{2}}$

Sol. (B) $\cot \theta=\frac{p}{q}$
$\because 1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta$
$1+\frac{p^{2}}{q^{2}}=\operatorname{cosec}^{2} \theta$
$\Rightarrow \operatorname{cosec}^{2} \theta=\frac{p^{2}+q^{2}}{q^{2}}$
49. If $A+B+C=90^{\circ}$, the what is the value of $\cos (A+C)$?
(A) $-\cos B$
(B) $\cos B$
(C) $-\sin B$
(D) $\sin B$

Sol. (D) Given $A+B+C=90^{\circ}$
$\cos (A+C) \Rightarrow \cos (90-B)\{\because \cos (90-\theta)=\sin \theta\}$
$\Rightarrow \operatorname{sinB}$

D ownload all N O T E S and PA PE R S at StudentSuvidha.com

50. In the given diagram $\overline{\mathrm{RS}} \perp \overleftrightarrow{\mathrm{ST}} \cdot \stackrel{\leftrightarrow}{\mathrm{ST}}$ represents a horizontal plane and $\overline{\mathrm{RS}}$ represents a pole. If the distance of T from S is K metre and a man at R sees the point T at an angle of depression of 30°, then what is the length of the pole $\overline{\mathrm{RS}}$ in metre?

(A) $\sqrt{3} \mathrm{~K}$
(B) $\frac{\mathrm{K}}{\sqrt{3}}$
(C) $\sqrt{2} \mathrm{~K}$
(D) $\frac{\mathrm{K}}{\sqrt{2}}$

Sol. $\quad \ln \Delta R S T$

$$
\begin{aligned}
& \tan 30^{\circ}=\frac{R S}{S T} \\
& \frac{1}{\sqrt{3}}=\frac{R S}{k} \\
& \Rightarrow R S=\frac{k}{\sqrt{3}}
\end{aligned}
$$

\square

