ORISSA BOARD SUBJECT : MATHEMATICS CLASS : X TIME : 1 : 15 HOURS

AR/AXR – 15 – MTH SET – B MAXIMUM MARKS : 50

Question with Solutions

PART-A

1. Sol.	For which value of p,(2, 2) (A) 3 (B) (C) Given equation $3x + 4y$ If (2, 2) is a solution of this 3(2) + 4(2) - 2P = 0 2P = 14 P = 7) 5 7 – 2P = 0	(C) 7	? (D) 9
2.	If the equation $3x + y + 1 =$	0 and rx + sy + 7 = 0) are inconsistent, then w	/hat is r ; s ?
	(A) 3 : 1 (B)) 1 : 3	(C) 5 : 1	(D) 1 : 5
Sol.	(A) $3x + y + 1 = 0$		(
	rx + sy + 7 = 0			
	For in consistent $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq$	$\frac{c_1}{c_2}$	in a	
	$\frac{3}{r} = \frac{1}{s}$			
	$\frac{r}{s} = \frac{3}{1}$	tron C	21	
3.	What is the value of the de	reminant 5 4 ?		
Col) 10	(C) 12	(D) 14
Sol.		No.		
	5 4 3 4			
	= 5 × 4 – 3 × 4			
	20 – 12 = 8			
4.	Which of the following poin	ts does not lie on the	graph of the equation 3	x − 2y + 4 = 0 ?
Sol.	(A) (2, 5) (B) (B) Given equation is 3x – 2) (1, 2) 2v + 4 = 0	(C) 4, 8)	(D) (–2, – 1)
501.	For point (2 , 5)	2y + 4 = 0		
	3(2) - 2(5) + 4			
	6 – 10 + 4			
	= 0 (lie on the equation)			
	For point (1 , 2)			

3(1) - 2(2) + 4 3 - 4 + 4 = 3 (does not lie) For point (4, 8) 3(4) - 2(8) + 4 = 0 (lie) For point (-2, -1) 3(-2) - 2(-1) + 4 = 0 (lie) Answer is (1, 2)

5. The graph of which of the following equations is parallel to the graph of 3x - y = 2? (A) 3x + y = -2 (B) 2x - 3y = 2 (C) 6x - 2y = 3 (D) 6x + 2y = -4

6.

Sol.

7.

Sol.

(C) 3x - y = 2Slope = $-\frac{3}{(-1)} = 3$ For option (A) slope = $\frac{-3}{1}$ For option (B) slope = $\frac{-2}{(-3)} = \frac{2}{3}$ For option (C) slope = $\frac{-6}{(-2)}$ = 3 For option (D) slope = $-\frac{6}{2} = -3$ Hence option (C) is correct. The sum of a number and its reciprocal is 3. If the number is x, then which of the following is the quadratic equation containing x ? $(B) x^2 + 3x + 1 = 0$ (A) $x^2 - 3x + 2 = 0$ (C) $x^2 - 3x + 1 = 0$ (D) $x^2 + 3x + 2 = 0$ (C) ATQ $x + \frac{1}{x} = 3$ $x^{2} + 1 = 3x$ $x^{2} - 3x + 1 = 0$ Which of the following being taken for p, the roots of the equation $x^2 + px + 1 = 0$ will be real and equal? (A) 2 (B) 2.5 (C) 4 (D) 8 (A) For real roots D = 0 $b^2 - 4ac = 0$ $p^2 - 4(1)(1) = 0$ $p^2 = 4$

p = ± 2

Hence option (A) is correct.

If one of the roots of the quadratic equation $x^2 + x + k = 0$ is -2, then what is the value of k? 8. (B) – 2 (C) - 3(A) 2 (D) 0 (B) If -2 is a root of this equation then Sol. $(-2)^{2} + (-2) + k = 0$ 4 - 2 + k = 0k = -29. Which of the following quadratic equations has the sum of the roots as 2 and product of the roots as -3? (A) $x^2 - 2x - 3 = 0$ (C) $x^2 - 3x - 3 = 0$ (B) $x^2 + 3x - 3 = 0$ (D) $x^2 + 2x - 3 = 0$ Sol. (A) equation is $x^{2} - x$ (sum of roots) + (product of roots) = 0 $x^{2} - x(2) + (-3) = 0$ $x^2 - 2x - 3 = 0$ 10. In an AP, t_8 is more than t_3 by 25. What is the common difference of the AP? (A) 5 (B) 4 (C) 2 (D) 1 Sol. (A) $t_8 = t_3 + 25$ a + 7d = a + 2d + 25 5d = 25 d = 5 11. What is the common difference of an AP of which $t_n = 5n + 1.2$ (B) 5 (D) 1 (A) 7 (C) 3 Sol. (B) $t_n = 5n + 1$ t₁ = 6 $t_2 = 11$ common difference = $t_2 - t_1 = 1$ 12. Which of the following sequences is not an AP ? (A) 1, 3, 5, 7, 9,..... (B) 0, −2, −4, −6,..... (C) − 7, −5, − 2, − 1, 1 $(D) - 6, -4, -2, 2, 3, 4, \dots$ Sol. (D) in option (D) -674, -223, 4... Difference between consecutive terms is not same. so this is not an A.P. In an AP, $S_n = n^2$, what is t_n ? 13. (A) 2n (B) 2n – 1 (C) 2n + 1 (D) 2n + 3 (B) $S_n = n^2$ Sol. $\frac{n}{2}[2a + (n-1)d] = n^2$ 2a + (n - 1)d = 2n (1) If n = 1 then $S_1 = a = 1$ (2) $T_n = a + (n - 1)d$ from eq. (1) & (2) $T_n = 2n - 1$

- What is the middle of the scores in a data arranged in ascending or descending order known as ?

 (A) Deviation
 (B) Mode
 (C) Mean
 (D) Median
- **15.** If M is the mean of the scores x_1 , x_2 , x_3 , ..., x_n , then what is the mean of the scores ax_1 , ax_2 , ax_3 ,..., ax_n (When $a \neq 0$) (A) M (B) M + a (C) aM (D) M - a

Sol. (C) $\frac{x_1 + x_2 + x_2 + x_3 + ... x_n}{n} = M$ $x_1 + x_2 + ... x_n = nM$ (1) required mean = $\frac{ax_1 + ax_2 + ... ax_n}{n} = \frac{a \times nM}{n} = aM$

16. What is the mean of the first 20 positive even numbers ? (A) 20 (B) 21 (C) 22 (D) 24 **Sol.** (B) First 20 positive even integers 2, 4, 6, ...40 Mean = $\frac{2+4+...40}{20} = \frac{2 \times (1+2+...20)}{20} = \frac{2 \times 20 \times 21}{20 \times 2} = 21$

17. What is the median of the data given below ? 7, 12, 15, 6, 20 (A) 12 (B) 10 (C) 7 Sol. (A) Given observation 7, 12, 15, 6, 20 $\Rightarrow 6, 7, 12, 15, 20$ number of observations = 5 Median = $\left(\frac{n+1}{2}\right)^{\text{th}}$ obs = $\left(\frac{5+1}{2}\right)^{\text{th}}$ = 3rd obs Median = 12

- **18.** If a ludo-dice is rolled once, then what is the probability of getting 5 or less than that ? (A) $\frac{3}{6}$ (B) $\frac{5}{6}$ (C) $\frac{6}{6}$ (D) $\frac{2}{3}$
- Sol. (B) S = { 1, 2, 3, 4, 5, 6 } required probability = $\frac{5}{6}$

19. Two coins are tossed once. What is the probability of getting at least two T's ?(A) $\frac{1}{4}$ (B) $\frac{2}{4}$ (C) $\frac{3}{4}$ (D) $\frac{4}{4}$ **Sol.** (A) S = {HH ,HT , TH , TT}
For at least two T's = {TT}

required probability = $\frac{1}{4}$

- **20.** A child is chosen at random from a group containing of 4 girls and 6 boys. What is the probability of the child being a girl ?
- (A) $\frac{1}{4}$ (B) $\frac{2}{3}$ (C) $\frac{2}{5}$ (D) $\frac{3}{4}$ (C) Total girls = 4Sol. Total boys = 6 Total children = 10 required probability = $\frac{4}{10} = \frac{2}{5}$ 21. Rose flowers of equal size are contained in a bag and of those 5 are red, 3 are white and 2 are yellow. If one is taken out from the bag at random, what is the probability of getting a red rose ? (B) $\frac{1}{5}$ (C) $\frac{3}{10}$ (A) $\frac{1}{3}$ (D) $\frac{1}{2}$ Sol. Red = 5White = 3 Yellow = 2Total flowers = 10 required probability = $\frac{5}{10} = \frac{1}{2}$ 22. If the coordinates of three vertices of an triangle are (0, 0), (1, 0) and (0, 1), then what is the area of the triangle in square unit? (B) $\frac{1}{2}$ (D) $\frac{1}{4}$ (A) 1 (B) Area of $\Delta = \frac{1}{2} |x_1(y_2 - y_3) + x_2(y_2 - y_1) + x_3(y_1 - y_2)|$ Sol. $= \frac{1}{2} |0(0-1) + 1(1-0) + 0(0)|$ $=\frac{1}{2}|1|=\frac{1}{2}$ 23. The distance between two points M and N is 5 units. If the ordered pair of M is (3, 1) and N lies in the yaxis. What is the ordered pair of N? (C) (5, 0) (A) (4, 0) (B) (0, 4) (D) (0, 5) Sol. (D) Let co-ordinate of point N is (0, y) ATQ $\sqrt{(0-3)^2 + (y-1)^2} = 5^2$ $9 + (y - 1)^2 = 25$ $(y-1)^2 = 16$ $y - 1 = \pm 4$ y = 5 or - 3Hence point (0, 5)

24. The origin is the mid point of a line segment and (2, 3) is one of its end point, then which of the following represents the ordered pair of the other end point ?

(A) $\left(\frac{1}{2}, \frac{3}{2}\right)$ (B) (-2, 3) (C) (2, -3) (D) (-2, -3)

Sol. (D) Let another ordered pairs is (x, y)

(a, 0) is mid point hence

 $\frac{x+2}{2} = 0 \qquad \& \qquad \frac{y+3}{2} = 0$ x = -2 y = -3 point is (-2, -3)

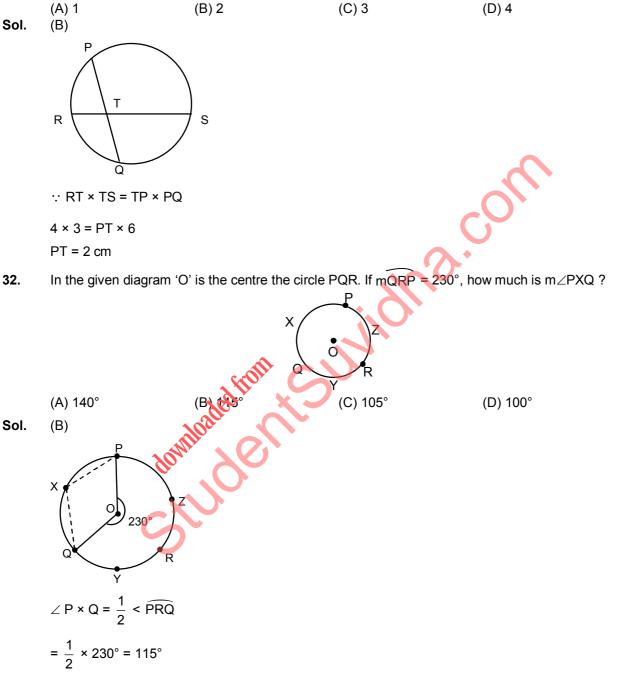
- **25.** The coordinates of two points A and b are (a, b) and (a, -b) respectively. What is the distance between them ?
- (A) 2a (B) 2b (C) $\sqrt{a^2 + b^2}$ (D) $2\sqrt{a^2 + b^2}$ Sol. (B) distance = $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ = $\sqrt{(a - a)^2 + (b - (-b))^2} = \sqrt{4b^2} = 2b$
- 26. If the ratios of the areas of two equilateral triangles is 16 : 25, then what is the ratio of the lengths of the corresponding sides of the same two triangles ?
 (A) 3 : 4
 (B) 6 : 5
 (C) 5 : 6
 (D) 4 : 5
- **Sol.** (D) $\frac{\text{Area of 1}^{\text{st}} \text{ triangle}}{\text{Area of 2}^{\text{nd}} \text{ triangle}} = \left(\frac{\text{side of 1}^{\text{st}} \text{ triangle}}{\text{side of 2}^{\text{nd}} \text{ triangle}}\right)^2$

ratio of sides of triangles = $\sqrt{\frac{16}{25}} = \frac{4}{5}$

27. In the given figure, $m \angle Q = 80^{\circ}$, $m \angle QSR = 102^{\circ}$ and $\triangle SQR = \triangle RQP$. What is $m \angle PRS$?

S 102° Q 51° (C) 75°

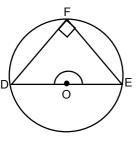
(D) 80°


(A) 65° (B) 70° Sol. (C) \triangle SQR ~ \triangle RQP \angle SQR = \angle RQP = 51° \angle QRS = \angle QPR = 180° – (102 + 51°) = 27° \angle RSQ = \angle PRQ = 102° Now \angle PRS = \angle PRQ – \angle SRQ

= 102° – 27° = 75°

28.	In $\triangle ABC$ and $\triangle DEF$ if m $\angle A$ = m $\angle D$. m $\angle B$ = m $\angle E$. AB = 2 cm, BC = 3 cm and DE = 6 cm, then EF in cm ?			what is	
Sol.	(A) 9 In ∆ABC & ∆DEF	(B) 7	(C) 5	(D) 3	
	$\angle A = \angle D$				
	$\angle B = \angle E$				
	so by AA similarity				
	$\triangle ABC \sim \triangle DEF$				
	so $\frac{AB}{DE} = \frac{BC}{EF}$				
	$\frac{2}{6} = \frac{3}{EF}$				
	EF = 9 cm				
29.	then what is QR in cm	n ?		triangles ∆DEF and ∆PQR are	similar,
Sol.	(A) 13 (C) ∆DEF ~ ∆PQD	(B) 14	(C) 12	(D) 16	
001.					
	$\frac{DE}{PQ} = \frac{EF}{QR}$			U	
				<u>}</u> י	
	$\frac{3}{9} = \frac{4}{QR}$				
	QR = 12 cm				
30.	In \triangle PQR, the bisector PS : PR ?	r of ∠PQR intersects	PR at the point S. If F	Q = 5 cm and QR = 7 cm, ther	n what is
	(A) 5 : 12	(B) 12 · 5	(C) 8 : 12	(D) 12 : 8	
Sol.	(A)	1020e	•		
	P A	MILL CI			
	$5 / \lambda^{S}$				
		λ			
	Q 7	R			
	by internal bisector th	eorem			
	PQ PS				
	$\overline{QR} = \overline{SR}$				
	$\frac{5}{7} = \frac{PS}{SR}$ (1)				
	7 SR				

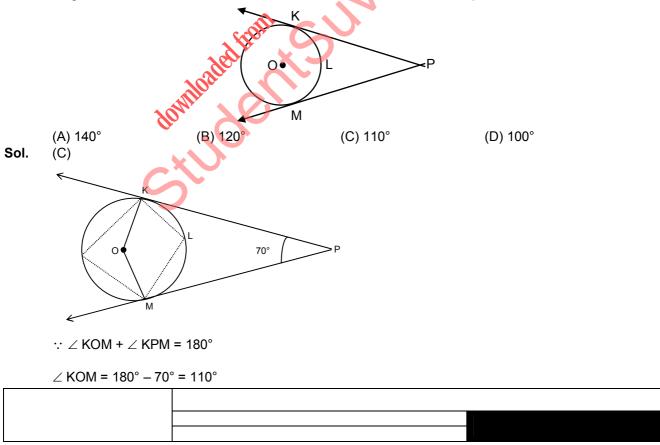
Now
$$\frac{PS}{PR} = \frac{PS}{PS + SR}$$
 from equ.(1)
= $\frac{PS}{PS + \frac{7}{5}PS} = \frac{5PS}{12PS} = \frac{5}{12}$


31. Two chords \overline{PQ} and \overline{RS} of a circle intersect each other at T. If RT = 4 cm, ST = 3 cm, QT = 6 cm, what is PT in cm?

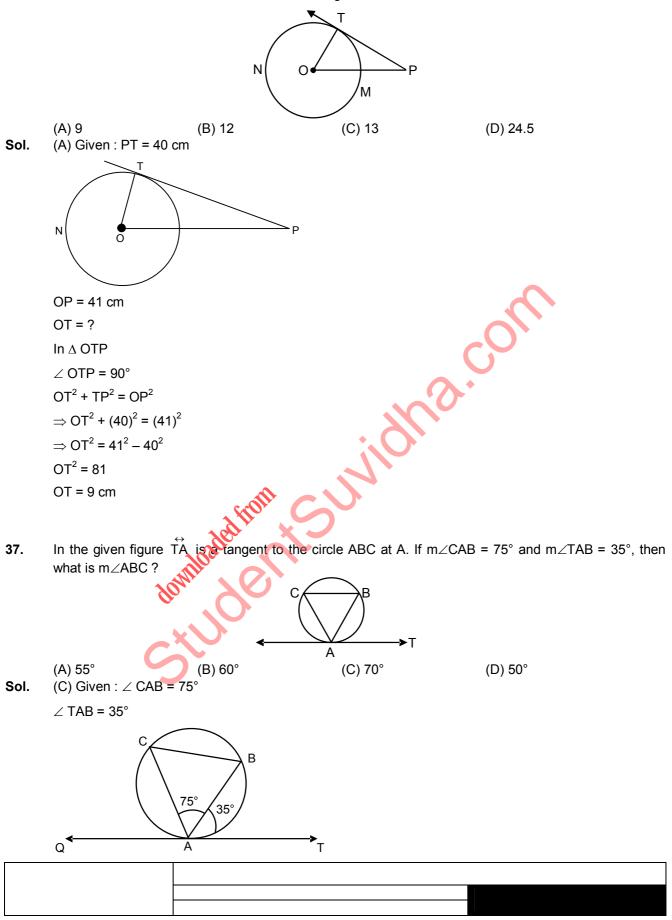
	1
	1
	1

33. DE is a diameter in the circle DEF. How much is mDFE ? (A) 180° (B) 135° (C) 120°

(D) 115°


Sol.

Sol.


(A)

DE is a diameter hevel $\angle \overrightarrow{\text{DFE}} = \angle \text{DOE} = 180^{\circ}$

- 34. What is the relation between the degree unit and radian unit used for measuring an angle ?
 - (A) $\frac{\pi}{3}$ radian = 40° (B) $\frac{2\pi}{3}$ radian = 100° (C) $\frac{\pi}{2}$ radian = 90° (C) in option (C) $\frac{\pi}{2} \times \frac{180^{\circ}}{\pi} = 90^{\circ}$ so option (C) is correct.
- **35.** In the given diagram, O is the centre of the circle KLM and K, M are the points of contacts of the tangents drawn to the circle from P. If $m \angle KPM = 70^\circ$, what is m KLM equal to ?

36. In the given figure, 'O' is the centre of the circle NMT. \overrightarrow{PT} is a tangent to the circle at T. If PT = 40 cm, OP = 41 cm, then what is the length of \overrightarrow{OT} in cm ?

 \angle CAQ + \angle CAB + \angle BAT = 180° (Linear pair) \angle CAQ = 180° (75 + 35°) = 180° - 110° = 70° \angle CAQ = \angle ABC = 70° (alternate interior angle segment theorem) O is the centre of a circle and P is an exterior point in the plane of the circle. If \overline{PT} is a tangent segment 38. to the circle, then how much is $m \angle TOP + m \angle TPO$? (A) 30° (B) 45° (D) 90° (C) 60° (D) $\therefore \angle \text{OTP} = 90^{\circ}$ (radius in perpendicular to tangent) Sol. In ∠ OPT \angle OTP + \angle TOP + \angle TPO = 180° (Angle sum property) $\therefore \angle \text{TOP} + \angle \text{TPO} = 180^\circ - 90^\circ = 90^\circ$ 39. What is the number of direct common tangents of two internally tangent circles ? (A) 4 (B) 2 (C) 1 (D) 3 Sol. (C) only one The difference of the circumference of two concentric circles is 88 cm. What is the width of the 40. concerned circular annulus ? (A) 7 (B) 14 (D) 21 (D) 42 Sol. (B) Let the radii be r₁ & r₂ cr then $2\pi r_1 - 2\pi r_2 = 28$ $2\pi (r_1 - r_2) = 88$ $r_1 - r_2 = \frac{88 \times 7}{2 \times 22}$ width = 14 cm The area of a sector is $\frac{11}{20}$ th of the area of the corresponding circle, what is the degree measures of 41. the arc of the sector ? (D) 198° (A) 60° (B) 120° (D) 189° (D) Let area of circle = πr^2 Sol. Area of sector = $\frac{\theta}{360}\pi r^2$ ATP

$$\frac{\theta}{360}\pi r^2 = \frac{11}{20}\pi r^2$$
$$\theta = \frac{360 \times 11}{20} = 18^\circ \times 11 = 198^\circ$$

- The volume of a prism is $84\sqrt{3}$ cubic cm and the height of the prism is 7 cm. If the base of the prism is 42. an equilateral triangle, then what is the length, in cm, of each side of its base ? (A) 7√3 (B) 6√3 (C) 5√3 (D) 4√3
- (D) Volume of prism = $84\sqrt{3}$ cm³ Sol. height of prism = 7 cm

let side of base = a cm

Volume of prism = Area of triangular base × height

$$84\sqrt{3} = \frac{\sqrt{3}}{4} a^2 \times 7 \Rightarrow a = 4\sqrt{3}$$

What is the volume, in cubic cm, of a cone with 6 cm as radius of the base and 7 cm as height ? 43. (A) $\frac{240}{2}\pi$ (B) $\frac{250}{2}\pi$

(C) 84π

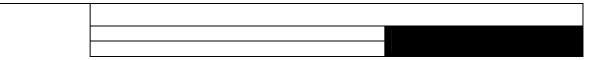
Volume of cone = $\frac{1}{3} \pi r^2 h$

$$= \frac{1}{3} \times \pi \times 6 \times 6 \times 7$$

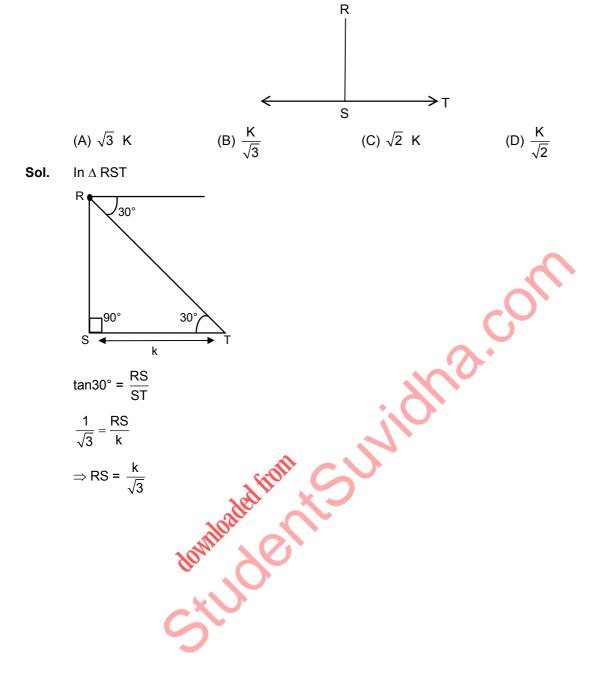
$$=\frac{1}{3} \times \pi \times 36 \times 7$$

$$= 84\pi \text{ cm}^2$$

- The inner radius and height of an open cylindrical vessel are $2\frac{1}{3}$ cm and 9 cm respectively. What is 44. the greatest number of cubic cm of liquid it can hold ? (D) 156
- (B) 145 (A) 142 (C) 154 (C) Radius of cylinder = $2\frac{1}{3} = \frac{7}{3}$ cm Sol.


(D) 87π

height of cylinder = 9 cm


Volume of cylinder = $\pi r^2 h$

$$= \frac{22}{7} \times \frac{7}{3} \times \frac{7}{3} \times 9$$
$$= 154 \text{ cm}^3$$

45. What is the value of cos(A + B) + cos(A - B)? (A) 2 sin A cos B (B) 2 cos A sin B (C) 2 cos A cos B (D) 2 sin A sin B. Sol. (C) $\cos (A + B) + \cos (A - B)$ \Rightarrow cosAcosB - sinAsinB + cosAcosB + sinAsinB $\Rightarrow 2cosAcosB$ Which of the following is equal to $\cot 80^\circ \times \cot 70^\circ \times \cot 60^\circ \times \dots \times \cot 10^\circ$? 46. (A) 0 (C) √2 (D) √3 (B) 1 (B) cot80° × cot70° × cot60° ...× cot10° Sol. $\cot 80^{\circ} \times \cot(90 - 80) \times \cot(70) \cot (90 - 70)$ cot80° × tan80° × cot70°tan70° × cot60°tan60° × cot50° × tan50° $\therefore \cot\theta \times \tan\theta = 1$ = 1 47. In Δ LMN, sin (L + M) = 1. What is m \angle N equal to ? (A) 60° (B) 90° (C) 120° Sol. (B) sin(L + M) = 1 $sin(L + M) = sin90^{\circ}$ \Rightarrow L + M = 90° by angle sum property $\angle N = 180-90^\circ = 90^\circ$ If $\cot \theta = \frac{p}{q}$, then what is the value of $\csc^2 \theta$? 48. (A) $\frac{p^2 - q^2}{q^2}$ (B) $\cot\theta = \frac{p}{q}$ Sol. $\therefore 1 + \cot^2 \theta = \csc^2 \theta$ $1 + \frac{p^2}{q^2} = \csc^2 \theta$ \Rightarrow cosec² θ = $\frac{p^2 + q}{q^2}$ 49. If $A + B + C = 90^\circ$, the what is the value of $\cos (A + C)$? (A) - cos B (B) cos B (C) – sin B (D) sin B Sol. (D) Given A + B + C = 90° $\cos (A + C) \Rightarrow \cos (90 - B) \{ \because \cos (90 - \theta) = \sin \theta \}$ \Rightarrow sinB

50. In the given diagram $\overrightarrow{RS} \perp \overrightarrow{ST} \cdot \overrightarrow{ST}$ represents a horizontal plane and \overrightarrow{RS} represents a pole. If the distance of T from S is K metre and a man at R sees the point T at an angle of depression of 30°, then what is the length of the pole \overrightarrow{RS} in metre ?

